There are two ways to add custom jars to PySpark in a Jupyter notebook:
1. Using the PYSPARK_SUBMIT_ARGS
environment variable
The PYSPARK_SUBMIT_ARGS
environment variable can be used to pass arguments to the spark-submit
command when submitting a PySpark job. To add custom jars to PySpark using this environment variable, you can do the following:
- First, download the JAR file you want to use and save it on your local machine. Next, create a new Python cell in Jupyter Notebook and import the “os” library.
- In the same cell, set the environment variable “PYSPARK_SUBMIT_ARGS” to include the path to the JAR file you downloaded. The code to set the environment variable is as follows:
export PYSPARK_SUBMIT_ARGS="--jars <path-to-jar1>,<path-to-jar2>"
- Start a Jupyter notebook and import PySpark.
- Create a SparkContext and a SparkSession.
- Use the
SparkContext.addJar()
method to add the custom jars to the SparkContext.
For example, the following code shows how to add two custom jars to PySpark:
import os
# Export the PYSPARK_SUBMIT_ARGS environment variable
os.environ['PYSPARK_SUBMIT_ARGS'] = '--jars /path/to/jar1.jar,/path/to/jar2.jar'
# Start a Jupyter notebook and import PySpark
import pyspark
# Create a SparkContext and a SparkSession
sc = pyspark.SparkContext()
spark = pyspark.sql.SparkSession(sc)
# Add the custom jars to the SparkContext
sc.addJar('/path/to/jar1.jar')
sc.addJar('/path/to/jar2.jar')
# Use the custom jars
df = spark.read.json('/path/to/data.json')
df.show()
2. Using the %configure
magic command
The %configure
magic command can be used to set Spark configuration properties in a Jupyter notebook. To add custom jars to PySpark using this magic command, you can do the following:
- Open a Jupyter notebook and import PySpark.
- Use the
%configure
magic command to set thespark.jars
property to the path of the custom jars.
For example, the following code shows how to add two custom jars to PySpark using the %configure
magic command:
import pyspark
# Use the %configure magic command to set the spark.jars property
%%configure -f {'spark.jars': '/path/to/jar1.jar,/path/to/jar2.jar'}
# Create a SparkContext and a SparkSession
sc = pyspark.SparkContext()
spark = pyspark.sql.SparkSession(sc)
# Use the custom jars
df = spark.read.json('/path/to/data.json')
df.show()